
Journal of
Journal of Memory and Language 57 (2007) 101–125

www.elsevier.com/locate/jml

Memory and
Language
Models of relevant cue integration in name retrieval q

Luigi Lombardi a,*, Giuseppe Sartori b
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Abstract

Semantic features have different levels of importance in indexing a target concept. The article proposes that semantic
relevance, an algorithmically derived measure based on concept descriptions, may efficiently capture the relative impor-
tance of different semantic features. Three models of how semantic features are integrated in terms of relevance during
name retrieval are presented. The models have been contrasted with empirical results from a naming-to-description task
administered to three different groups of participants: young people, healthy elderly and semantically impaired Alzheimer
patients. Predictions of the empirical results made by the models are used to provide a measure of identifiability or the
extent to which the models can be distinguished from one another. In three studies we show that an additive-type rule
is consistently superior to multiplicative rule and winner-take-all rule in predicting naming accuracy in a naming-to-de-
scription task. Finally, we investigated the implications of the integration rules for degraded semantic knowledge.
� 2006 Elsevier Inc. All rights reserved.
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Introduction

Many cognitive theories assume that concepts can be
considered, at least in part, as either organized struc-
tures of semantic features (e.g., Collins & Quillian,
1969; Hinton & Shallice, 1991; McRae, de Sa, & Seiden-
berg, 1997; Smith & Medin, 1981) or points in a high-di-
mensional space (e.g., Landauer & Dumais, 1997;
Shepard, 1957). The purpose of the present research is
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to investigate how semantic features are combined in
the process of concept retrieval in a naming-to-descrip-
tion task by contrasting differing binding mechanisms in
neurological patients with diagnoses of dementia of Alz-
heimer’s type (DAT) with probable semantic memory
disorders and healthy controls. Modeling how individu-
als integrate multiple sources of information has been a
cornerstone in many theories of cognitive processes,
including perception (e.g., Anderson, 1981; Massaro,
1990), categorization (e.g., Anderson, 1991; Kruschke,
1992; Nosofsky, 1986), and generalization (e.g., Shep-
ard, 1987). However, the modeling of integration of
semantic features in the name retrieval process of natu-
ral concepts has received considerably less attention.
The question we address in this paper is how normal
and semantically impaired individuals integrate two or
more semantic features that may have different
ed.
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relevance values with respect to candidate concepts (in
the process of naming).

Semantic features may trigger concept retrieval on the
basis of their degree of informativeness for the target
concept. A concept may have uncountable semantic
features, although those which are really useful in discrim-
inating it from other closely related concepts may not be
numerous. The following is a telling example1: Æhas two
humpsæ is a semantic feature of high relevance for the
concept CAMEL, because most subjects use that feature
to define it, whereas very few use the same feature to define
other concepts. Instead Æhas 4 legsæ is a semantic feature
with lower relevance for the same concept, because few
subjects use it to define CAMEL but do use it to define many
other concepts. Among all the semantic features of a
concept, those with high relevance are useful in discrimi-
nating the concept from those similar to it.

Semantic relevance has been recently proposed by
Sartori and Lombardi (2004) as a measure which indexes
the level of importance of a semantic feature to the
meaning of a concept. Semantic relevance is the result
of two components: (i) a local component, which mea-
sures the importance of the semantic features for the
concept, which may be interpreted as dominance, and
(ii) a global component, which measures the importance
of the same semantic feature for all the other concepts in
the lexicon, which may be interpreted as distinctiveness.
Dominance scores high when the semantic feature is fre-
quently mentioned in defining a concept (Ashcraft,
1978). In contrast, distinctiveness scores high when a
semantic feature is used in defining few concepts
(Devlin, Gonnerman, Andersen, & Seidenberg, 1998;
Marques, 2005; Randall, Moss, Rodd, & Tyler, 2004).
Finally, semantic relevance scores high when a semantic
feature is both frequently mentioned in defining a con-
cept (high dominance), but only mentioned in defining
few other concepts (high distinctiveness). Unlike distinc-
tiveness which is a general (global) property of a feature,
semantic relevance is a dimension which is concept-de-
pendent, since the relevance of a given semantic feature
usually varies across the different concepts in the lexicon
(see the mathematical formulation of semantic relevance
in the next section). When a set of semantic features is
presented to an individual, their overall relevance results
from the integration of the individual relevance values
associated with each of the semantic features. The con-
cept with the highest integrated relevance is the one that
is retrieved with higher probability. For example, the
features Æhas a beakæ, Æsimilar to a gooseæ, and Ælives in
pondsæ have top relevance for the concept DUCK, fol-
lowed by SWAN, and then OSTRICH (see Fig. 1). The
retrieved concept, given a description containing the
1 Concept names are printed in uppercase (e.g., DOG) and
names of semantic features in angled brackets (e.g., Æhas a tailæ).
above three features, will be DUCK, as it has the highest
integrated relevance.

A number of investigations have been conducted in
order to test the role of semantic relevance in concept
retrieval. At behavioral level, Sartori, Lombardi, and
Mattiuzzi (2005a) have shown that semantic relevance
predicts accuracy in a naming-to-description task better
than other well-known psycholinguistic parameters such
as age-of-acquisition, familiarity, typicality, and frequen-
cy. Also in a feature-verification task, participants are
faster and more accurate in deciding whether a high-rele-
vance feature belongs to a concept when compared to low-
relevance features (Sartori, Polezzi, Mameli, & Lombardi,
2005b; Sartori, Mameli, Polezzi, & Lombardi, 2006).

The role of relevance of features has also been stud-
ied in semantically impaired neurological individuals
(both herpes and DAT patients). Specifically, given that
the concepts belonging to the Living category tend to
have on average lower total relevance,2 when patients
with category-specific impairments for the Living cate-
gory are presented with descriptions of concepts having
matched integrated relevance across categories of Living
and Non-living concepts, the previously reported
impairment for Living concepts disappears (Sartori &
Lombardi, 2004). As regards the neural correlates of
semantic relevance, a number of studies using ERPs
and fMRI have been conducted. The ERPs of semantic
relevance were investigated by means of the N400, which
is a negative deflection that can be used to measure
semantic incongruity (Kutas & Federmeier, 2000). It
was found that the N400 is larger for low-relevance fea-
tures rather than for high-relevance features (Sartori
et al., 2005b). Furthermore, when descriptions of con-
cepts belonging to either the Living or Non-living cate-
gories are equated for their integrated relevances, the
seemingly category effect at neural level disappears in a
feature-verification task. Likewise, when relevance is
matched across sensory and functional features types a
larger N400 previously reported for sensory features dis-
appears (Sartori et al., 2006). These results clearly paral-
lel the findings of the studies conducted at behavioral
level reported above. Finally, the neural locus in which
semantic relevance exerts its effect has been studied using
fMRI in the case of higher order visual features. Mech-
elli, Sartori, Orlandi, and Price (2006) report that rele-
vance modulates neuronal responses in the medial
fusiform gyrus bilaterally, demonstrating that neuronal
responses during concept retrieval are affected by the
semantic relevance of the higher order visual features
in a picture-naming task.
2 The total relevance for a concept is computed by integrating
the relevance values of all the semantic features which are listed
in defining the concept in a feature-to-listing task (Sartori et al.,
2005a).
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Fig. 1. Additive integration of semantic relevance (hypothetical example). A directed arrow between an attribute and a concept
indicates that the attribute applies to the concept. Numerical values on the arrows denote semantic relevances. The concept with the
highest summed relevance (DUCK) is the one that will be retrieved.

L. Lombardi, G. Sartori / Journal of Memory and Language 57 (2007) 101–125 103
However, the central issue of how differing semantic
features are integrated in order to retrieve the corre-
sponding concept is still awaiting specific investigations.
Up to now, the proposed models of semantic relevance
have been based on the standard, but empirically unver-
ified, assumption of additivity of relevance of features
(Sartori & Lombardi, 2004; Sartori et al., 2005a; Mech-
elli et al., 2006). In this paper, we present and compare
various semantic integration models of how multiple
semantic features influence concept name retrieval in a
naming-to-description task. The main concerns are the
integration processes assumed by the models and the
resulting differences in their predictions. Each model is
described and implemented in a stochastic framework
and similarities and differences between the models are
noted in three experiments involving three different
groups of participants: normal adults, semantically
impaired (DAT) patients, and healthy elderly controls.

The remainder of the paper is organized as follows.
First, we review the formal framework used to define
the notion of semantic relevance. Next, we describe three
integration models of how semantic features are com-
bined in terms of relevance during name retrieval. The
three models are based on three different integration
rules (additive, multiplicative, and winner-take-all rule)
each of which subsumes a different psychological princi-
ple in the name retrieval process. We then compare the
models with previous well-known models of category
learning and cue integration and emphasize the com-
monalities and differences with respect to our new con-
tribution. Next, the predictions of the three relevance
models are derived and tested on data collected on three
different groups of participants: young people, healthy
elderly and semantically impaired Alzheimer patients.
The predictions made by the models are used to provide
a measure of identifiability from which the models can
be discriminated from one another. Finally we investi-
gate, in a Monte Carlo simulation study, the implica-
tions of the three integration models for degraded
semantic knowledge. We close by considering further
possible extensions of our approach.
A formal framework for semantic relevance

Many of the most influential theories of conceptual
representation have been based on semantic features as
their representational currency (e.g., Smith & Medin,
1981). Feature-based models have also been applied to
the analysis of categorization (e.g., Estes, 1993; Medin
& Schaffer, 1978), memory (e.g., Murdock, 1993), and
similarity (Tversky, 1977). A main assumption made
by the feature-based models is that concepts can be
meaningfully reduced to sets of features. Moreover,
these features are usually treated as independent in the
sense that they make separable contributions to the
model’s output.

Semantic relevance models are feature-based models
in which concepts are defined by vectors of weights cod-
ifying the intensities of features or properties used in
describing a semantic domain. In a relevance context
we usually refer to concept names as basic-level category
names (Rosch, 1978). It is worthwhile representing a
concept domain as an I (concepts) · J (features) domi-
nance matrix X = [xij], where xij 2 Rþ denotes the degree
of dominance (intensity of association) of Feature j for



Table 1
Hypothetical (7 · 8) dominance matrix X

X

Concepts Features

f1 f2 f3 f4 f5 f6 f7 f8

c1 1 0 0 2 0 0 3 0
c2 3 0 0 0 0 0 0 0
c3 1 0 0 0 2 0 0 0
c4 0 0 2 0 0 0 0 0
c5 0 1 0 0 0 3 0 2
c6 0 0 0 0 0 0 1 2
c7 0 0 0 0 0 1 0 3

Ij 3 1 1 1 1 2 2 3
g 1.222 2.807 2.807 2.807 2.807 1.807 1.807 1.222

Rows of X correspond to 7 different concepts, whereas columns of X represent 8 different features. Entry xij of X denotes the frequency
of occurrence of Feature j in Concept i over all subjects’ descriptions; for example, x43 = 2 is the frequency of feature f3 in concept c4.
The row denoted by Ij contains the number of concepts for which feature fj applies at least once. So, for example, I6 = 2 as the sixth
column of X contains two non-zero frequencies. The row denoted by g contains the elements gj (j = 1, . . . , 8) of the global component
parameter (see Eq. (2) in the text).
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Concept i. If xij = 0, we say that concept ci and feature fj

are unrelated in the concept domain.
Several weighting schemes may be derived in

modeling relevance (see, e.g., Mechelli et al., 2006; Sar-
tori & Lombardi, 2004; Sartori et al., 2005a). In this
paper, we refer to a simple weighting scheme called
FF · ICF (Feature Frequency · Inverse Concept Frequency),
adapted from Salton’s well-known TF · IDF (Term Fre-

quency · Inverse Document Frequency) information
retrieval measure (Salton, 1989). The hypothetical dom-
inance matrix (Table 1) and its derived relevance matrix
(Table 2) serve as a guiding example for FI · ICI com-
putations. Under the FI · ICI assumption the domi-
nance matrix X is computed by setting entry xij as
equal to the number of co-occurrences of Feature j in
Concept i over all subjects’ descriptions collected in a
feature-to-listing task3 (Sartori & Lombardi, 2004).
3 Feature-to-listing task is an empirical paradigm widely
adopted in the featural based approach to construct and
validate empirically derived conceptual representations. Several
versions of the feature-to-listing task have been proposed in the
literature (see, for example, Cree & McRae, 2003; Cree,
McNorgan, & McRae, 2006; Randall et al., 2004; Rosch,
1975; Sartori & Lombardi, 2004; Storms, De Boeck, & Ruts,
2001; Tversky, 1977; Vigliocco, Vinson, Lewis, & Garrett,
2004), but, despite minor differences, they all require partici-
pants to list the features they believe to belong to a concept or
stimulus. With regard to the semantic features collected in a
relevance framework, they can be of any type and contain
heterogeneous information about concepts, such as perceptual
information (DOG: Æhas four legsæ), functional information
(DOG: Æis used for huntingæ), associative information (DOG:
Ælikes to chase catsæ) and encyclopaedic information (DOG: Æmay

be one of many breedsæ). This reflects the commonly believed
fact that semantic memory includes heterogeneous knowledge
about concepts.
Dominance can be understood as a measure of the local
strength of a feature in describing a concept; for exam-
ple, the higher the association xij of Feature j for Con-
cept i, the more it is dominant for that concept
(Ashcraft, 1978). A relevance process acts by transform-
ing X into an I · J relevance model matrix K = [kij]
which is derived by the following simple equation

kij ¼ gjxij; i ¼ 1; . . . ; I; j ¼ 1; . . . ; J ð1Þ

where gj represents a global feature weight. In particular
gj can be computed as

gj ¼ log2

I
Ij

� �
; j ¼ 1; . . . ; J ð2Þ

where Ij (with, 0 < Ij 6 I) denotes the number of con-
cepts in which Feature j loads a positive dominance
(see Table 1, row denoted by Ij).

In substantive terms the global weigh may be read as
follows: the more concepts a given feature is connected
with the less distinctive is that feature (low gj). The intu-
ition was that a feature that occurs in many concepts is
not a good discriminator, and should be given less
weight than one which occurs in few concepts, and the
weight gj was an heuristic implementation of this intui-
tion. Therefore, a feature that represents a good cue
for a concept will have both high dominance and high
distinctiveness. In contrast, if kij = 0, we say that Fea-
ture j is irrelevant for Concept i. Notice that, like distinc-
tiveness, semantic relevance depends on the total
number (I) of concepts in the representational model,
which ideally should correspond to the size of the mental
lexicon. This may be a critical point as we ignore on
what set of concepts the actual computations of our
mind are based. However, Sartori et al. (2005a) showed
the robustness of relevance estimations. By means of a
Monte Carlo simulation study these authors found that



Table 2
Relevance model matrix K derived from the dominance matrix X in Table 1

K

Concepts Features

f1 f2 f3 f4 f5 f6 f7 f8

c1 1.2 0 0 5.6 0 0 5.4 0
c2 3.7 0 0 0 0 0 0 0
c3 1.2 0 0 0 5.6 0 0 0
c4 0 0 5.6 0 0 0 0 0
c5 0 2.8 0 0 0 5.4 0 2.4
c6 0 0 0 0 0 0 1.8 2.4
c7 0 0 0 0 0 1.8 0 3.7

Entry kij of K contains the relevances of a feature fj for concept ci. For example, k43 = x43 · g3 = 2 · log2(7/1) = 5.6 is the relevance of
feature f3 for concept c4 (see Eq. (1) in the text).
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even if, in theory, the number of concepts in the repre-
sentational model influences the absolute values of rele-
vance, in practice the relevance ranking of concepts
computed with varying levels of I remains substantially
unchanged. Further formal and substantive interrela-
tionships among dominance, distinctiveness and seman-
tic relevance are discussed in Sartori et al. (2005a).

Closely related attribute dimensions

However, semantic features may differ on dimen-
sions other than distinctiveness, dominance, and
semantic relevance, and those dimensions can also
influence the impact of a feature on different semantic
tasks. In order to clarify our notion of semantic rele-
vance, we distinguish it from other closely related
dimensions such as salience, conceptual validity, and
diagnosticity.

Salience refers in general to the intensity of a feature,
the extend to which it presents a high amplitude signal in
relation to background noise (Tversky, 1977). Semantic
relevance is clearly not identical to salience because
some features can be highly salient but have low rele-
vance values. For example, Æhas big teethæ which is a
highly salient feature for LION has little relevance value
for the same concept as many wild animals share this
visual property (low distinctiveness).

Conceptual validity (or category validity) refers to the
percentage of concepts displaying a given feature. Within
a featural approach it can be represented as the condition-
al probability of a feature given a concept which has an
obvious estimate in the normalized dominance:
P ðfjjciÞ � xij

N , where N denotes a normalization factor
which depends on the type of feature-listing task adopted.

Diagnosticity is usually referred to the informational
value of a feature for one concept relative to a family of
concepts. For example, if one’s task is to retrieve a con-
cept name, say DOG, the feature Æit barksæ may prove
highly diagnostic as it excels at distinguishing DOG from
other concepts of animals. Diagnosticity can be
measured by means of cue validity (Rosch, 1978). Esti-
mation of cue validity can be characterized as a process
of inferring a Bayesian posterior probability for Concept
i given that it has Feature j. Bayes’ formula can be used
to express this in terms of the prior probability of
retrieving Concept i and the conceptual validity of Fea-
ture j for Concept i (see Appendix A.2 for further
details). Unlike cue-validity, semantic relevance is a heu-
ristic norm which is not based on probability estimates.
Nonetheless, semantic relevance and diagnosticity share
a common predictive goal as they are both concept-rel-
ative measures which integrate the informational value
of a feature for one concept relative to the remaining
concepts in the semantic domain.
Modeling a naming-to-description task

A widely adopted paradigm within the neuropsychol-
ogy community is the so called naming-to-description
task. It consists of presenting participants with a sen-
tence describing a target concept, and including a set
of semantic features. For example, the features Æhas an
handle-baræ, Æhas two wheelsæ and Æhas two pedalsæ is pre-
sented orally to the participant who is required to
retrieve the name BICYCLE (see Table 3 for other exam-
ples of concept descriptions). The paradigm can be
understood as a particular kind of production task in
which the retrieved concept name belongs to a possibly
very large set of candidate names. According to our for-
mal framework, this empirical task appears to involve at
least three different sequential processes (Massaro, 1987;
Selfridge, 1959): evaluation, semantic integration, and
decision (which finally leads to name retrieval). More
formally, when the concept description is presented to
a participant, the overall relevance for this description
results from the integration of the individual relevance
values associated with each of the semantic features in



Table 3
Representative semantic features of high and medium relevance
values for concepts GULL and PIPE-ORGAN

GULL PIPE-ORGAN

Features with high relevance Features with high relevance
Æfound near the seaæ Æhas pipesæ
Æhas webbed feetæ Æsimilar to a pianoæ
Æhas wingsæ: Æcan be found in the cathedralæ

Features with medium
relevance

Features with medium relevance

Æhas white feathersæ Æcan be filled with windæ
Æhunts for fishæ Æhas pedalsæ
Æfliesæ Æused in ceremoniesæ
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the description. The concept with the highest integrated
relevance is the one that will be retrieved. The evaluation
stage is defined as the analysis of each semantic feature
in the description by the processing system. In the
semantic relevance approach, it can be thought of as
the retrieval, for each feature in the description, of its
corresponding relevance value. In the evaluation stage,
we assume that the resulting relevance value for a given
feature in the description is independent of the remain-
ing semantic features in the same description. This inde-
pendence assumption rules out the possibility that, for
example, in an evaluation stage the relevance values of
attribute Æhas a tailæ is affected by the relevance values
of attribute Æcan barkæ. However, we do not assume that
it also rules out a possible interaction of the semantic
information in the final response that is due to the nat-
ure of the integration process.

Semantic integration is defined as some combination
of the relevance representations made available by the
evaluation process. We assume that for each concept-
name ci in the lexicon the semantic integration stage
provides a single integrated relevance value Ki as a
deterministic function

Ki ¼ /ðkiÞ

of the different relevance values ki ¼ ðkij1
; kij2

; . . . ; kijq
Þ

provided by the evaluation stage and associated with
the q different features in the concept description. More-
over, we also assume that the integrated relevance values
have no-memory of how they were obtained. In other
words, if two different sets of semantic features lead to
identical outcomes of relevance integration, then the
decision concerning which concept-name to retrieve
would be the same in both cases. The latter means that
the decision stage involved in name retrieval does not
have access to the initial relevance values given by the
evaluation stage and operates exclusively on the final
integrated relevance value.

Finally, the retrieval accuracy for the target concept
ci given a concept description is modelled by a logistic
function as follows:
pi ¼
1

1þ exp½�ðb0 þ b1KiÞ�
: ð3Þ

In Eq. (3), b1 > 0 is a steepness parameter (e.g., as
b1 fi +1, the logistic function reduces to a step func-
tion). Whereas b0 6 0 is the intercept parameter (lower
the value of b0 the more the function shifts to the right).
The model in Eq. (3) represents a monotonic transfor-
mation of the integrated relevance value Ki. Some exam-
ples of logistic functions compatible with a naming
accuracy scenario are shown in Fig. 2. Standard rele-
vance models (e.g., Sartori & Lombardi, 2004) are based
on the assumption of additivity of relevance of semantic
features (see Fig. 1). However, it is still to be established
empirically whether participants really integrate infor-
mation about features in an additive fashion. In this pa-
per we propose three different elementary rules that
could be used to integrate semantic relevance. We will
describe the models that serve as representatives of the
additive, multiplicative, and winner-take-all rules. The
models will be contrasted against each other and com-
pared with other existent models in the categorization
or learning literature.

The additive relevance model

According to the additive rule, the retrieval accuracy
for the target concept ci given the set of features Ai is
given by

p1
i ¼

1

1þ exp½�ðb0 þ b1ð
P

j2J i
kijÞÞ�

; ð4Þ

where Ji denotes the set of feature indices associated to
Ai. The integrated relevance value K1

i ¼ /1ðkiÞ can be
understood as the additive combination of its relevance
values. We suppose that each concept ci would be com-
pared to the set of features Ai and that the matching
probability would simply add to the target concept in
the amount of their weighted dominance values. In psy-
chological substantive terms the additive model implies
that in the integration process the semantic features
are considered independent in the sense that they make
additive contributions to the probability of retrieving
the target concept. In a more technical way we mean
that the semantic effects of two features do not interact
in the integration process, that is to say they are stochas-
tically independent (Ashby & Townsend, 1986). Another
issue that can be closely associated with semantic inde-
pendence is that of semantic separability. For example,
according to Garner and Morton (1969), we may consid-
er two features as semantically separable if they act sep-
arately in the semantic system and thus can go
independently of each other in the integration process.
The assumption of independence is critical in both the
design of behavioral experiments and the development
of models and theories of category learning, concept
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similarity and generalization. In general we refer to rep-
resentational models that lack cross-featural interactions
as being semantically independent.

The multiplicative relevance model

The assumption of featural independence may lack
psychological validity. In principle, the additive rele-
vance model can suffer from inherent fitting disadvan-
tage because of its additive nature. For example, it can
lack any capacity to allow a final integrated relevance
value that increase (resp. decrease) in a not linear way.
Moreover, the additive rule lacks any sensitivity for cap-
turing eventual interactions among the informative val-
ue of semantic features. According to the multiplicative

rule, the probability model is given by

p2
i ¼

1

1þ exp½�ðb0 þ b1ð
Q

j2J i
kijÞÞ�

: ð5Þ

In the multiplicative relevance model, the integrated
relevance value K2

i ¼ /2ðkiÞ is defined as the multiplica-
tive combination of the relevance values in the concept
description. This model mimics a semantic integration
process that exaggerates the informativeness of high rel-
evant descriptions relative to less informative descrip-
tions and eventually increases the estimated percentage
of correct retrievals. A further potential virtue of the
multiplicative rule is that it can be sensitive to correla-
tional structure of the featural dimensions (see Medin,
1983). However, it is sensitive to the presence of irrele-
vant features as well. As an example, let us consider
two features f1 and f2 with corresponding relevance val-
ues ki1 = 0.05 and ki2 = 7.5 (for a concept ci), respective-
ly. The results of the integration rules are:
7.55 = 0.05 + 7.5 for additive and 0.375 = 0.05 · 7.5
for multiplicative. The multiplicative rule might under-
perform whenever a concept description contains a
majority of irrelevant features together with a small set
of very relevant features (like, for example, Æhas to
humpsæ for CAMEL). In this latter case we speculate that
individuals may still be able to correctly retrieve the tar-
get name independently of the presence of irrelevant
features.

The winner-take-all relevance model

According to the winner-take-all (WTA) relevance
model, a concept retrieval can be based on only one
cue, whatever the total number of cues presented in
the concept description. WTA relevance model searches
for the best cue in the order of its semantic relevance for
the concept. Formally it can be defined as follows:

p3
i ¼

1

1þ exp½�ðb0 þ b1ðmaxfkij : kij 2 kigÞÞ�
: ð6Þ

This model allows the retrieval decision maker to fol-
low a simple exhaustive search of the best relevant cue:
the feature with the maximum relevance for the concept
is the selected one. Such one-cue selection does not need
to combine different features, and so no common curren-
cy between cues need to be determined. The rationale for
basing a concept retrieval on only a single piece of
semantic information rather than on a combination of
several cues is that combining the information from dif-
ferent cues requires converting them into a common
final currency, an integration that can be, depending
on the nature of the semantic task and the state of the
cognitive system, expensive in terms of cognitive capac-
ity. In contrast, this heuristic employs a minimum
knowledge and computation to make choices in a
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semantic retrieval environment. However, such simplic-
ity need not necessarily lead to a disadvantage in retriev-
al accuracy, as a simple max-type rule can help the
retrieval model to be more robust than those that are
based on multiple-cues integration. In general, the
WTA relevance model may be considered more robust
as it can better ignore the noise inherent in many seman-
tic cues by looking instead to the most relevant cue.
Thus, simply using the best cue can automatically yield
robustness (Gigerenzer, Hoffrage, & Kleinblting, 1991).
Furthermore, best relevant cues are likely to remain
important even when the semantic representation chang-
es to some degree, for instance due to semantic perturba-
tion or semantic deficits. In contrast, low relevant cues
can be more affected by random perturbation.

Relation to other models

The relevance models in Eqs. (4)–(6) are closely relat-
ed to other integration models such as, for example, the
rational Bayesian model of categorization (e.g., Ander-
son, 1991), the linear integration model (Anderson,
1981), the additive-prototype model (Smith & Minda,
1998), the multiplicative-prototype model (Estes, 1986;
Nosofsky, 1987), the generalized context model (Nosof-
sky, 1984, 1986), and the probabilistic mental models
(Gigerenzer et al., 1991). Here we will mainly focus on
the general aspects of the comparison.

Bayesian models. The additive relevance model in Eq.
(4) shares many commonalities with the rational Bayes-
ian model of categorization. One obtains a rational
Bayesian model (Anderson, 1991) if the notions of dom-
inance and semantic relevance are replaced with those of
conceptual validity and cue validity, respectively. The
Bayesian model allows for a normative optimal solution
of the retrieval problem. Like the additive relevance
model also the Bayesian model assumes independence
between features. More precisely the critical assumption
is that the probability of observing a conjunctive combi-
nation of features given a target concept is independent
of the probabilities of each single feature in the concept
description. In general, however the specific representa-
tions of the two models are substantially different. In
particular, given a concept-feature pair (c, f), the Bayes-
ian model focuses on the derivation of the prior proba-
bility P(c) and the conceptual validity P(f|c). The prior
probability P(c) reflects the a priori probability of
retrieving a concept name before the concept description
is presented to the participant.4 Unlike the Bayesian
model, the additive relevance model does not use any
concept parameter. It seems plausible that this difference
4 In our opinion there is no straightforward way to estimate
such prior probability from data collected using a feature-to-
listing task.
depends upon the nature of the empirical task modelled.
The Bayesian model of categorization has been devel-
oped for modeling data collected from researches study-
ing the acquisition of artificial categories in the
laboratory (e.g., Anderson, 1991; Friedman, Massaro,
Kitzis, & Cohen, 1995) in which stimuli are character-
ized by few selected features. From its part semantic rel-
evance models are feature-based models of non-artificial
concept descriptions which are represented by high-di-
mensional co-occurrence data matrices. These co-occur-
rence data matrices immediately reveal the problem of
data sparseness, also known as zero-frequency problem

(Witten & Bell, 1991). A typical concept-feature matrix
derived from a feature-to-listing task may only have a
small fraction of non-zero entries (typically well below
1%), which reflects the fact that only very few of the fea-
tures in the feature set are actually used in any single
concept. Therefore, most of the counts in the matrix will
thus typically be zero or at least significantly corrupted
by sampling noise. If normalized frequencies (probabili-
ty estimates) are used in predicting naming accuracy, a
large number of co-occurrences is observed which are
judged to be impossible based on the data set. This
means that the Bayesian model may be sensitive to the
zero-frequency problem. In contrast, the relevance mod-
els are based on a information retrieval measure
(FF · ICF) which, in turn, has been proven to efficiently
overcome the sparseness problem (Salton, 1991; Salton
& Buckley, 1988).

Linear integration models. According to Anderson
(1981) a semantic integration can be computed by the
addition of the quantities representing the evaluation
of each cue of information. The retrieval is assumed to
be linear; that is the integrated value can be mapped lin-
early into a rating scale. Like the additive relevance
model and unlike the Bayesian model, the linear integra-
tion model is non-optimal (in a normative sense). The
retrieval given two features supporting the same concept
is a sort of average between the retrievals given to the
separate features presented in isolation. In contrast,
optimal integration (i.e., Bayes’s theorem) dictates that
the retrieval given two independent features be more
extreme than either of the retrievals given the separate
features supporting the same concept. However, the lin-
ear integration model and the additive relevance model
differ with respect to the statistical tool adopted. Ander-
son (1981) proposed a comprehensive framework for the
analysis of integration based on the analysis of variance
(ANOVA) and interval-response scales. Unlike the addi-
tive relevance model, the linear integration model does
not provide any explicit procedure, such as distinctive-
ness, to weight informative cues. From its part the addi-
tive relevance model is based on a generalized linear
model which is able to work with both non-normal data
(e.g., accuracies, reaction times) and non-linear
functions mapping integrated relevance into responses
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(see Appendix A.1 for further details). Finally, like the
Bayesian model, also the linear integration model has
been applied mainly to experimental data collected in
the laboratory.

Prototype and exemplar models. Prototype models are
parametric models assuming that people abstract and
store the prototype of categories. The prototype is
defined as the most typical, or representative, category
member (e.g., Rosch, 1977) and is usually computed as
the centroid for all points in the multidimensional space
that are associated with the category. From their part,
relevance models are based on a semantic representation
in which basic categories are described by sets of rele-
vant features. According to the featural representation
proposed in this paper, the relevance profiles of the I dis-
tinct concepts do not correspond to the centroids of the
associated I basic categories. Therefore, the relevance
profile of a concept cannot be interpreted as a sort of
prototype pattern. The difference between relevance
models and exemplar models is even more extreme as
exemplar models assume that humans represent catego-
ries by storing every exemplar (together with its category
label) in memory. Moreover, like the Bayesian models,
also the prototype and exemplar models have been prev-
alently applied in researches studying the acquisition of
simplified artificial categories (but see Smits, Storms,
Rosseel, & De Boeck (2002) and Storms et al. (2001)
for an application of the generalized context model to
the domain of natural concepts). Nonetheless, we can
still observe some commonalities between these families
of models. Like the multiplicative relevance model, also
most currently popular categorization models such as,
for example, the multiplicative-prototype model (Estes,
1986; Nosofsky, 1987) and the generalized context mod-
el (Nosofsky, 1984, 1986) satisfy the product rule. In
particular, the global match between the probe stimulus
and the exemplars (or prototypes) is usually defined as
an exponentially decreasing similarity function satisfy-
ing the product rule property. However, unlike these
models, the multiplicative relevance model does not
use any kind of similarity matching function in the mod-
eling of the retrieval process.

Probabilistic mental models (PMM). Gigerenzer
et al. (1991) proposed a formal framework for modeling
inferences from memory. The main assumption of this
approach is that cognitive processes are based on simple
and plausible mechanisms of inference. Those mecha-
nisms are so simple that a cognitive system can carry
them out under limited time and knowledge. In particu-
lar, in PMM the search for information is reduced to a
minimum, and in general there is no integration of ele-
ments of information. The take-the-best algorithm is
probably the most known implementation of this family
of models. Like, the WTA relevance rule, the take-the-
best algorithm assumes a subjective rank order of the
cues according to their informativeness. Hence, the best
cue is selected and the remaining cues are ignored. How-
ever, unlike the WTA relevance rule, the take-the-best
algorithm usually works for binary cues and is a simple
heuristic that cannot be considered a standard statistical
tool for inductive inference. Nonetheless, like the WTA
relevance rule, it is a noncompensatory algorithm as
only the best discriminant cue determines the final infer-
ence and no combination of other cues can contribute to
this inference.
Rationale of the empirical studies

In order to evaluate which of the previously proposed
relevance integration rules best predicts naming accura-
cy, we report three experiments on three different groups
of participants: (a) normal adults (b) semantically
impaired (DAT) patients, and (c) elderly healthy con-
trols. All the experiments in this paper employed a par-
ticular paradigm, the so called naming-to-description
task, which permits full control over the presented
semantic features and is an empirical paradigm usually
adopted to investigate semantic memory disorders
(e.g., Lambon Ralph, Graham, Ellis, & Hodges, 1998;
Silveri & Gainotti, 1988). Given the set of plausible inte-
gration models described above, the real basis of com-
parison is the predictive power of the models. Reliable
assessments will be possible only after the models have
been contrasted in a broad range of experimental tasks.
Here we begin this project by providing a simple exper-
imental setting in which the performance of the models
is evaluated in different groups of individuals.

Study 1

In this first study we evaluate the performance of the
three relevance integration models in predicting naming
accuracy in a naming-to-description task administered
to a group of young adults.

Method

Participants. Twenty-six undergraduate and post-
graduate students (22 women, 4 men; mean
age = 23.4) from the Faculty of Psychology of the Uni-
versity of Padua (Italy) participated voluntarily in the
first experiment.

Stimuli and procedure. Fifty concepts were used, ran-
domly selected from a larger pool of 254 concepts
belonging to the dominance database of Sartori and
Lombardi (2004), which furnished the starting domi-
nance matrix. The dominance database contained
concepts included in 13 different categories (i.e., birds,
buildings, clothes, flowers, furniture, fruits, houses,
wares, mammals, musical instruments, vegetables, vehi-
cles and weapons; Dell’Acqua, Lotto, & Job, 2000) and
2619 distinct features. The 50 concepts selected for use



Table 4
Parameter point estimates, nonparametric bootstrap mean
parameter estimates and nonparametric standard errors for
the three integration models (additive, multiplicative, and
WTA) fitted to the observed naming accuracy yi

b0 z p b1 z p

Additive: K1
i

Point �3.137 �18.59 <.01 0.151 19.59 <.01
Mean �3.147 0.151
SE 0.147 0.007

Multiplicative: K2
i

Point �0.807 �11.07 <.01 0.002 11.78 <.01
Mean �0.809 0.0018
SE 0.065 0.0001

WTA: K3
i

Point �1.844 �15.39 <.01 0.165 15.18 <.01
Mean �1.848 0.165
SE 0.096 0.009
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in this investigation guaranteed: (i) a sufficient number of
stimuli in order to run the accuracy models, (ii) the var-
ious semantic relevancies spanned within range
[1.39,33.22] with mean = 9.39 and SD = 6.56. Each con-
cept ci (i = 1, . . . , 50) was described by a sentence con-
taining a set Ai of ni semantic features (ni ranging from
1 to 6) randomly selected from the set of all features that
applied to it. For each concept ci, the ni semantic features
were presented orally and in random order to the partic-
ipants, who were required to retrieve the corresponding
concept with an emphasis on accuracy rather than speed.
The required responses were oral. The dependent vari-
able of this study was naming accuracy, yi (with
mean = 0.471 and SD = 0.383), computed as the propor-
tion of subjects who correctly retrieved the name of the
target concept given the feature set Ai. The independent
variables were the three integrated semantic relevance
values Kh

i (h = 1,2,3) computed according to Eqs.
(4)–(6).

Model fitting. The data collected from the experiment
were fit using the three logistic models described by Eq.
(10) (see Appendix) on the basis of maximum-likelihood
estimation (MLE). MLE parameters values and their
standard errors for the three models are presented in
Table 4. The standard errors were also estimated by
taking 1000 nonparametric bootstrap samples from the
data. More precisely, for each observed accuracy yi,
the resampling was done by drawing an integer number
between 0 and 26 from a binomial distribution,
n�i � Binðyi; 26Þ, therefore the observed proportion yi

was replaced with y�i ¼ n�i =26. The fit of the model based
on the additive integration rule (AIC1 = 395.15,
R2

1 ¼ 0:705, r1 = 0.879)5 was better than the fit yielded
by the other two competing models (multiplicative rule:
AIC2 = 779.81, R2

2 ¼ 0:297, r2 = 0.573; max rule:
AIC3 = 674.75, R2

3 ¼ 0:408, r3 = 0.678). Fig. 3 (left pan-
els) shows the data and the model predicted values.
Fig. 3 (right panels) shows the residual scatterplots for
the three logistic models.

Evaluating model mimicry. The problem of identify-
ing the true integration relevance model cannot be based
exclusively on a generic evaluation of the goodness-of-fit
for the observed data, as the obvious mathematical
dependency between the three integration rules yields
strong inter-correlations between the empirical predic-
tors (see Fig. 4). Therefore, it can be difficult to discrim-
5 The Akaike criterion (AIC) is an index of fit that takes into
account the parsimony of the model. Smaller AIC values are
indicative of a better fit to the data. R2 is a generalization of the
residual sum of squares for linear models which is defined as
1 � (logL1/logL0), where logL1 and logL0 are the deviance
under the target model and the deviance under the null model
(that is the model based only on the intercept parameter b0),
respectively. Finally, r denotes the Pearson-correlation between
the predicted probability p and the observed accuracy y.
inate between the real adequacy of the three rules. In
particular, one of the models may happen to show a gen-
eral larger flexibility in fitting the data. This larger flex-
ibility may be due to a sort of chameleon model, which is
able to give a relatively good account for data it did not
actually generate. Hence, it is important to evaluate to
which extent a given integration rule is able to mimic
the behavior of other rules. In this section we will asses
the relative flexibility of the models using the parametric

bootstrap cross-fitting method (PBCM) proposed by
Wagenmakers, Ratcliff, Gomez, and Iverson (2004).
This sampling procedure consists in generating distribu-
tions of differences in goodness-of-fit expected under
each of the competing models. Therefore, the original
observed differences in goodness-of-fit can be compared
to the generated distributions of differences which allows
for a quantitative evaluation of model adequacy. In par-
ticular, for each pair of different models (h,h 0), the
PBCM procedure yields two distributions of AIC differ-
ences, one derived under the assumption that model h is
true, and one derived under the assumption that model
h 0 is true. The observed difference computed on the ori-
ginal data set can then be assessed with reference to
these two distributions. When the observed difference
has higher probability under the distribution with model
h-true than under the alternative distribution (model
h 0-true) this is an evidence supporting that model h is
more adequate than model h 0 (see Appendix for a
detailed description of the PBCM procedure implement-
ed in this paper).

With respect to our data, the difference distributions
are shown in Fig. 5. The inspection of Fig. 5 allows
several observations. First, on the basis of the nominal
criterion 0 of no difference in AIC value, all simulated
data sets are correctly classified across all difference
distributions. That is to say, there is no overlap between
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Fig. 3. Logit models for naming accuracy yi. Panel (a.h): scatterplot of yi on Kh where filled dots represent the model predictions ph.
Panel (b.h): residual plots of the linear predictor lh. Index value: h = 1 (additive), 2 (multiplicative), 3 (WTA).
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the difference distributions across all comparisons. Sec-
ond, the observed difference in AIC values is located
near the middle of the additive rule model (top panel
and bottom panel of Fig. 5). This result indicates that
the data are much more likely under the additive inte-
gration rule than under either the multiplicative rule or
WTA rule.

Assessing the relevance integration assumptions.

Semantic relevance integration rules are based on the
main assumption requiring the existence of a monotonic
function between integrated relevance and naming accu-
racy. Results of our analysis have confirmed the plausi-
bility of this hypothesis. However, it is not clear whether
naming accuracy is really independent from the particu-
lar size and type of set of features used in the concept
description, that is to say, if naming accuracy depends
exclusively on the final value of the integrated semantic
relevancies. In order to check whether the number ni

of semantic features used in the concept description
might have affected the goodness-of-fit of the additive
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rule model, we ran a new analysis by introducing ni as an
additional factor in the logit model. The result of the
likelihood-ratio test between the original logistic model
and the new model showed a significant reduction of
the deviance due to the ni term (Dd = 11.64, with
p < 0.001). However, the difference between the amount
of deviance explained by the new model and that
explained by the original model is substantially negligi-
ble, R2

new � R2
old ¼ 0:717� 0:705 ¼ 0:012, as is the

difference in the AIC values, AICnew � AICold =
385.52 � 395.15 = �9.63. Therefore, adding the new
term ni does not seem to really challenge the pattern of
results obtained by the original model, although it sug-
gests that future investigations concerning the possible
effect of description length on naming accuracy might
clarify the real validity of the no-memory assumption.

Performance of the Bayesian model. Given that the
Bayesian model shares many commonalities with
the additive relevance model, one may wonder whether
the two models differ with respect to data fitting. We
can construct a Bayesian model (Anderson, 1991) by
integrating into the Bayes’ rule the notions of conceptual
validity and cue validity (see Appendix A.2 for further
details). In order to make the comparison valid the
two models should have equivalent degrees of freedom.
Therefore, we set to 1/(I = 254) the prior probability of
each of the 50 target concepts in the experimental task.
This latter constraint yielded a simplified version of
the Bayesian model. To overcome possible mis-estima-
tion of the Bayesian model, we fit the dependent variable
by means of a simple linear model yi = b0 + b1p(ci|Ai),
where p(ci|Ai) denotes the Bayesian conditional proba-
bility of retrieving ci given the description Ai (see Eq.
(14), Appendix). MLE parameters values and their
standard errors for the Bayesian model were �0.021
(0.057) for b0 (p = 0.718) and 0.664 (0.075) for
b1 (p < 0.001), respectively. Although the fit of the
Bayesian model (R2 = 0.573) was better than the fit
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yielded by the multiplicative relevance model and WTA
relevance model, the additive relevance model outper-
formed the Bayesian one.

Discussion

The results are more consistent with the model based
on the additive integration rule. Moreover, the evalua-
tion of the model mimicry also confirms the hypothesis
that adding distinct relevance information yields a bet-
ter explanation of the empirical data in a naming-to-de-
scription task. The probability of retrieving the name of
the target concept is higher when the integrated
relevance is also high and, in general, the retrieval func-
tion is nearly linear over much of its range, say between
about K1 = 10 and K1 = 30. Moreover, an almost per-
fect concept retrieval is observed when descriptions
with integrated relevance values greater than K1 = 40
are presented to participants. In conclusion, the predic-
tion based on the additive rule is striking compared
with the other two competing models and the overall



6 Data were collected in two different periods of time. In the
first period, a test with 50 concept descriptions was adminis-
tered to 15 DAT patients. Next, in a subsequent period, 30
supplementary concept descriptions were presented to a new
group of 15 patients. This new group was composed of seven of
the original 15 patients plus eight new DAT patients. The two
DAT groups (first group: 15 patients, new group: 8 patients) did
not differ with respect to the basic neuropsychological tests
presented in Table 5.
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result is in line with what was already observed in pre-
vious studies on the predictive power of semantic rele-
vance (Mechelli et al., 2006; Sartori et al., 2005a,
2005b).

Study 2

Neuropsychological studies conducted on patients
with specific knowledge impairments have been a useful
source of data for addressing issues on the organization
of conceptual-semantic knowledge in the human brain
(Forde & Humphreys, 2000). Semantic relevance was
originally proposed as a model for explaining category
specificity in neuropsychological patients with semantic
memory disorders (Sartori & Lombardi, 2004). Seman-
tic memory patients show a degradation of concept
representation which causes poor performance in
semantic memory tasks. They are impaired in concept
description, in word-picture matching, in picture nam-
ing, and also in naming-to-description (Hodges &
Patterson, 1995). An interesting issue is whether the
impairment exerts its effect through a modification of
the original semantic relevance values or through a
modification of the featural integration mechanism. In
order to verify these contrasting hypotheses, in this
second experiment a naming-to-description task was
administered to a DAT group. The experimental design
is identical to that of Study 1, with the following two
exceptions: first, a new set of 80 concept descriptions
was presented; second, given that patients with
DAT might have severe memory problems, each of
our concept descriptions was limited to only three
features.

Method

Participants. Twenty-three patients with diagnoses of
dementia of Alzheimer’s type (DAT) (mean age = 76.8
years, SD = 8.31; mean education = 6.8 years,
SD = 5.05) were selected for this second study. All
patients were native Italian speakers. Some degree of
semantic impairment is commonly seen in the early stag-
es of dementia of Alzheimer’s type (Chertkow & Bub,
1990; Hodges & Patterson, 1995), and this investigation
was conducted on DAT patients with this characteristic.
The background neuropsychological data collected on
the DAT patients are reported in Table 5. The 23
DAT patients (15 women, 8 men) met the National
Institute of Neurological and Communicative Disorders
and Stroke/Alzheimer’s Disease and Related Disorders
Association (NINCDS/ADRDA) criteria for probable
Alzheimer’s disease (McKhann et al., 1984). All 23
patients had Hachinski scores (Hachinski et al., 1975)
below 4 and an MMSE (Folstein, Folstein, & Mc Hugh,
1975) below 24/30. All patients with DAT were at least 2
SD below average scores of the normative sample on
two anterograde and two semantic memory tests.
All underwent CT or MRI scanning, together with a
screening battery to exclude treatable causes of demen-
tia. Patients with major depression, past history of
known stroke or TIA, alcoholism, head injury or major
medical illnesses were excluded. Patients were recruited
in three hospitals and four nursing homes located in
the Veneto district (North-East Italy).

Stimuli and procedure. Eighty concepts were used in
this second study. The concepts were randomly selected
from the same database used in Study 1. Each concept
was described by a sentence consisting of only three
semantic features randomly selected from the set of all
the features that applied to the target concept (relevance
range [1.12,51.03] with mean = 22.01 and SD = 11.33).
The three semantic features were presented orally in ran-
dom order to the participants, who were required to
retrieve the corresponding concept. Each sentence was
presented to 15 different patients.6 As for Study 1, the
responses were oral.

Model fitting. Data collected from the DAT group
were fit using the three logistic models described by
Eq. (10). The average accuracy of the DAT group on
the 80 items was 0.284 (SD = 0.272). Table 6 reports
the best MLE parameters and their standard errors.
As for Study 1, we also computed bootstrap standard
errors for the estimated parameters. The fit of the model
based on the additive integration rule (AIC1 = 353.81,
R2

1 ¼ 0:625, r1 = 0.815) was better than the fit yielded
by the multiplicative rule (AIC2 = 522.75, R2

2 ¼ 0:289,
r2 = 0.542) and the max rule (AIC3 = 464.24,
R2

3 ¼ 0:405, r3 = 0.651). A large proportion of partici-
pants showed medium-low accuracy and only one sub-
ject had a perfect retrieval performance. In general, the
retrieval function was approximately linear over all its
empirical range (Fig. 6).

Evaluating model mimicry. With respect to DAT
data, the difference distributions are shown in Fig. 7.
In the DAT group the differences in the AIC values
are qualitatively similar to those observed in Study 1.
Like Study 1, the additive integration model is better
able to account for the observed AIC difference comput-
ed on the original data set, as it is closer to the middle of
its distribution as compared to the distribution of the
alternative competing model.



Table 5
Background neuropsychological and semantic memory screening tests for group of DAT patients and normal controls

Description DAT Controls Difference

Mean SD Mean SD

Neuropsy. tests

MMSE (correct max = 30) 19.06 2.51 25.81 1.45 p < .05
Prose memory test 1.98 0.63 9.01 2.88 p < .05
Incid. phon. memory (max = 20) 1.33 0.71 3.67 1.38 p < .05

Semantic memory tests

Picture naming
Non-living % (N = 32) 50.5 12.33 82.41 9.88 p < .05
Living % (N = 32) 48.6 18.12 84.55 11.07 p < .05

Naming to description
Verbal description % (N = 14) 57.33 15.81 91.22 9.39 p < .05
Visual description % (N = 11) 31.56 16.31 81.02 15.08 p < .05

Table 6
DAT group

b0 z p b1 z p

Additive: K1
i

Point �4.445 �16.98 <.01 0.060 14.96 <.01
Mean �4.465 0.062
SE 0.261 0.004

Multiplicative: K2
i

Point �1.717 �16.93 <.01 0.0002 10.86 <.01
Mean �1.711 0.0001
SE 0.1015 0.00001

WTA: K3
i

Point �2.670 �17.23 <.01 0.054 13.21 <.01
Mean �2.632 0.058
SE 0.155 0.004

Parameter point estimates, nonparametric bootstrap mean
parameter estimates and nonparametric standard errors for the
three integration models (additive, multiplicative, and WTA)
fitted to the observed naming accuracy yi.

7 Like for Study 2, also in this third study data were collected
in two different periods of time. In the first period, a test with
50 concept descriptions was administered to 25 controls. Next,
in a subsequent period, 30 supplementary concept descriptions
were presented to a new group of 25 controls. This new group
was composed of 14 of the original 25 patients plus eleven
new controls. Like for patients with DAT, they did not differ
with respect to the basic neuropsychological tests presented in
Table 5.
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Discussion

Overall, the results are more consistent with the model
based on the additive integration rule. This conclusion is
supported by both the results of the model fitting and
PBCM analysis. We believe that one important factor
is, indeed, the different task adopted in Study 2. In con-
trast to the modality of feature presentation of Study 1,
where an experimental sentence could contain a number
of different features ranging from 1 to 6, the task admin-
istered to the DAT group involved only three different
semantic features. In theory, this description length con-
straint might have an effect in diminishing the difference
between the integration rules. In particular, the task in
Study 1 would naturally yield larger semantic relevance
variability, as compared to that of Study 2. In order to
avoid this problem we augmented the number of concepts
in the experimental task (from 50 to 80 concepts), as well
as the range of the relevance values as compared to Study
1. This provided enough information to discriminate the
predictive power of the three integration rules.

Study 3

In the third study, the performance of the DAT
group from Study 2 on the naming-to-description task
was compared to that of a group of older healthy adults,
matched for age, education, and vocabulary.

Method

Participants. A group of 31 normal controls (mean
age = 75.01 years, SD = 7.78; mean education = 5.41
years, SD = 2.25), matched for age and education to
the DAT group. Controls performed better than
patients with DAT on picture naming and naming-to-
description tests, used here as semantic memory screen-
ing tests (Table 5).

Stimuli and procedure. A new set of 80 concepts were
used in this second study (relevance range [1.17,44.21]
with mean = 21.07 and SD = 10.44). Selection proce-
dure, modality of stimuli presentation and required
response were the same as in Study 2. In particular, each
sentence was presented to 25 different controls.7
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Model fitting. The average accuracy of the controls
group on the 80 items was 0.475 (SD = 0.335). Table
7 reports the best MLE parameters and their standard
errors. The fit of the model based on the additive inte-
gration rule (AIC1 = 575.38, R2

1 ¼ 0:672, r1 = 0.822)
was better than the fit yielded by the multiplicative rule
(AIC2 = 771.66, R2

2 ¼ 0:495, r2 = 0.715) and the max
rule (AIC3 = 842.5, R2

3 ¼ 0:431, r3 = 0.671). Fig. 8 (left
panels) shows the data and the model predicted values.
Fig. 8 (right panels) shows the residual scatterplots for
the three logistic models. In contrast to the DAT
group, the control group had a large proportion of par-
ticipants who showed medium-high accuracy (Fig. 8,
panel a.1).

Evaluating model mimicry. As for the DAT group,
also in the control group, the additive integration model
seems to better account for the observed AIC difference
computed on the original data set, as it is closer to the
middle of its distribution as compared to the distribu-
tions of the alternative competing models (Fig. 9).
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Discussion

The results in the control group were consistent with
what observed in the previous studies. In particular, the
model based on the additive integration rule yields, over-
all, a better support for the observed data. This seems to
be an almost robust result across all the three studies. In
sum the results suggest that both the multiplicative and
WTA models have something amiss in accounting for
the empirical data.

Implications for degraded semantic knowledge

The sensitivity of the three integration rules to
degraded semantic knowledge can differ in substantive



Table 7
Control group

b0 z p b1 z p

Additive: K1
i

Point �3.127 �20.61 <.01 0.072 21.57 <.01
Mean �3.189 0.069
SE 0.151 0.003

Multiplicative: K2
i

Point �1.119 �15.93 <.01 0.0002 17.34 <.01
Mean �1.121 0.0002
SE 0.070 0.00001

WTA: K3
i

Point �2.627 �18.02 <.01 0.128 18.56 <.01
Mean �2.591 0.131
SE 0.145 0.006

Parameter point estimates, nonparametric bootstrap mean
parameter estimates and nonparametric standard errors for the
three integration models (additive, multiplicative, and WTA)
fitted to the observed naming accuracy yi.

8 This proportion was computed as the average of the values

1� ½K�i =Ki�;

across the 80 randomly selected concepts, where K�i and Ki

denote the integrated semantic relevance computed according
to the perturbed relevance matrix K* and the original relevance
matrix K, respectively.
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ways. Semantic memory deficits can be the result of sev-
eral types of neuropathology. For example, the clinical
course of Alzheimer’s disease is generally characterized
by progressive gradual memory deterioration. In partic-
ular, Alzheimer’s disease is a pathology of widespread,
patchy damage affecting many regions in the brain such
as temporolimbic and frontoparietal regions. Neuroana-
tomical investigations in semantically impaired patients
demonstrated a considerable decrease in the synapse to
neuron ratio, due to synaptic deletion (e.g., Davies,
Mann, Sumpter, & Yates, 1987). Semantic memory
impairments can be simulated by damaging computa-
tional models of normal semantic system. For example,
a common assumption in connectionist models of seman-
tic memory deficits (e.g., Devlin et al., 1998; Farah &
McClelland, 1991; Rogers et al., 2004) implies a diffuse,
progressive deletion of the connections between units
in the semantic system. Within our featural approach,
a good analogy to the Alzheimer’s pathology is provided
by subjecting the featural representation to diffuse, pro-
gressive deletion of the connections between features
and concepts in the semantic system. However, like
other authors (e.g., Devlin et al., 1998) we do not assume
that our featural representation maps directly onto a
network of neurons and that connections between fea-
tures and concepts correspond to synapses. Rather, we
may assume that a single semantic feature is represented
in the brain by a possibly large subnetwork of neurons
with complex interactions. Consequently, under this
assumption, a concept corresponds to a structure of
these subnetworks.

The aim of this section is twofold. On one hand, we
were interested in understanding how a diffuse, progres-
sive deletion of relevance values in the model can affect
the integrated relevance of a concept description. In
particular, we evaluated the impact of deletion on the
three integration rules proposed in this paper. On the
other hand, we wanted to estimate the degree of deteri-
oration of semantic knowledge representation in the
DAT group as compared to the controls group. A
simple statistical procedure is proposed to estimate the
percentage of semantic degradation in the DAT group.
In particular, we investigated how the degree of seman-
tic degradation in the DAT group varied as a function of
the relevance integration rules discussed in this paper.

Simulating degraded semantic knowledge

To simulate the progressive nature of the disease and
evaluate its impact on integrated relevance values, the
(254 · 2619) relevance model matrix K was lesioned with
varying levels of severity. A lesion consisted in removing
a percentage of the 14,170 positive relevance entries in
K. Three aspects were systematically varied in a com-
plete factorial design: (a) the size q of the concept
description, at four levels: 2, 3, 5, and 10 features; (b)
the proportion e of deleted positive relevance entries in
K, at 20 levels: .05, .10, .15, . . . , 1.00; (c) the type of inte-
gration rule adopted: additive, multiplicative, and WTA.
For each combination of factors q and e, 80 random
concept descriptions were constructed as follows: First,
80 different concepts were randomly selected from the
whole set of 254 concepts. Subsequently, for each select-
ed concept, a concept description was constructed by
randomly selecting q semantic features from the set of
all the features that apply to the concept. Next, K was
perturbed according to severity damage e. Random per-
turbation was carried out stochastically by setting to 0
the fraction e of all positive entries in K. This yielded
the new perturbed relevance matrix K*. Therefore, for
each concept description, the corresponding integrated
relevance was recomputed according to K*. Dependent
variable was the proportion of integrated relevance loss8

as a functions of q, e, and type of integration rule.
Fig. 10 presents the averaged results of 500 simulations.
Overall our results suggested that all three integration
rules were sensitive to perturbed semantic representa-
tions. However, a dominance relation can be read from
Fig. 10 as follows:

Multiplicative � Additive �WTA;

where X � Y denotes that X is more sensitive to
semantic perturbation than Y. In general, the effect
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of the perturbation was stronger in the multiplicative
model. The effect increased with larger sizes q of con-
cept description or more severe proportion e of ran-
dom perturbation. Unlike, the multiplicative rule, the
additive rule was linearly sensitive to random pertur-
bation and its effect remained constant across q. As
expected, the WTA rule was very robust to random
perturbation and overall the effect decreased with larg-
er values of q.
Estimating the amount of semantic memory damage

Another issue worth of investigation concerns the
overall degree of deterioration of semantic knowledge
in DAT patients. Here we will propose a statistical pro-
cedure to estimate the percentage of semantic degrada-
tion in the DAT group. In particular, we will
investigate how semantic degradation varies as a func-
tion of the relevance integration rules proposed in this
paper.
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We implemented three general linear models corre-
sponding to the three integration rules in which we
considered also a group factor (DAT vs. controls) as
an additional variable in the models. This allows a
direct test for a possible group effect on naming accura-
cy. In the final logistic models the new linear predictor
lh

i (for each integration rule h = 1,2,3) is defined as
follows:
lh
i ¼ bh

0 þ chDh
i þ bh

1Kh
i : ð7Þ

In Eq. (7), Dh
i is the dummy variable codifying the two

groups of concepts, more precisely, Di is coded 1 for
DAT-concepts (the 80 concepts of Study 2) and 0 for
control-concepts (the 80 concepts of Study 3). There-
fore, for DAT the model becomes

lh
i ¼ ðb

h
0 þ chÞ þ bh

1Kh
i ; ð8Þ



Table 8
Final model

Estimate SE z p

Additive: K1
i

b1
0 �2.940 0.121 �24.23 <.001

c1 �1.956 0.106 �18.29 <.001
b1

1 0.068 0.002 26.31 <.001

Multiplicative: K2
i

b2
0 �0.936 0.060 �15.58 <.001

c2 �1.113 0.090 �12.36 <.001
b2

1 0.0002 0.00001 20.39 <.001

WTA: K3
i

b3
0 �1.677 0.088 �19.03 <.001

c3 �1.826 0.103 �17.62 <.001
b3

1 0.080 0.003 21.30 <.001

Parameter point estimates and standard errors for the additive,
multiplicative, and WTA integration models fitted to the
observed naming accuracy yi.
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and for controls

lh
i ¼ bh

0 þ bh
1Kh

i : ð9Þ

The parameters b0 and b1 are, respectively, the intercept
and slope for the controls group; ch gives the difference
in intercepts between the controls and DAT groups.
Table 8 reports the best MLE parameter estimates and
their standard errors for the three models. In accordance
with the results of Study 2 and Study 3, the fit of the
model based on the additive integration rule
(AIC1 = 932.05, R2

1 ¼ 0:678, r1 = 0.840) was better than
the fit yielded by the multiplicative rule (AIC2 = 1325.4,
R2

2 ¼ 0:450, r2 = 0.731) and the max rule (AIC3 =
1392.6, R2

3 ¼ 0:411, r3 = 0.668).
For each final model we estimated the percentage of

semantic degradation in the DAT group by means of a
simple statistical procedure (see Appendix A.3). Accord-
ing to this procedure we observed the following approx-
imated percentages of semantic degradation: �p ¼ 37:5%
(additive relevance model), �p ¼ 22:5% (multiplicative
relevance model), and �p ¼ 67:5% (WTA relevance mod-
el). Notice that the additive model predicts a degree of
semantic degradation which is proportional to the
amount of integrated relevance loss (see Fig. 10). In con-
trast, both the multiplicative and WTA models are non-
linearly related to this loss. In particular, the
multiplicative model infers a mild level of semantic deg-
radation (about 20%), whereas the WTA model predicts
a very severe deterioration (approximately 70%) in the
DAT group. Given that the fit of the final model based
on the additive integration rule was clearly better than
the fit yielded by the other two models, we may conclude
that a mild-severe damage of the semantic representa-
tion can be associated to the DAT group.

Discussion

Semantic degradation may be modelled assuming
that damage reduces the connection strength between
semantic features and concepts (this is a widely accepted
assumption; e.g. see McLeod et al., 2000). As the weight
of connections between semantic features and concepts
may be a way of conceptualizing relevance, the more
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relevant a feature for a concept, the more probable that
concept will be misnamed when the feature is damaged.
Hence, the behavioral consequence of damage is expect-
ed to be proportional to the relevance of the lost/dam-
aged feature. In sum, given random damage, the
likelihood of correctly retrieving a concept will be
reduced proportionally to the magnitude of the damage
while the same qualitative pattern among controls and
patients with DAT will be reproduced. And this is what
we observed.

DAT patients with a general cognitive level similar to
that of our patients, as measured by the MMSE, typical-
ly show impairment on semantic tasks. Degradation of
conceptual knowledge follows the severity of the disease
(Garrard, Lambon Ralph, Hodges, & Patterson, 2001)
and it is the contention of Gainotti, Silveri, Daniele,
and Giustolisi (1995) that DAT causes widespread dam-
age to the temporal lobes and consequently impairment
of semantic knowledge. An interesting issue is the differ-
ence between DAT patients and controls in terms of the
binding mechanism underlying naming to description.
Results show that, rather than causing a qualitative
change in the binding mechanism, the semantic impair-
ment of patients with DAT seems to reduce the rele-
vance values of semantic features. More precisely,
when compared to controls, patients with DAT require
greater values of integrated relevance to correctly
retrieve concept names. This result is consistent with
those neuropsychological findings that explain the
degenerative semantic disorder as a widespread neuronal
damage (e.g. Hodges & Patterson, 1995) that, in our
terms, is likely to affect relevance values of semantic
features.
Conclusions and possible extensions

The main purpose of this article was to develop and
test three different integration models based on the
hypothesis of semantic relevance (Sartori & Lombardi,
2004). This hypothesis reflects the idea that concepts
are described by a set of semantic features, as other con-
cept representation models do (Durrant-Peatfield, Tyler,
Moss, & Levy, 1997; Humphreys & Forde, 2001), but it
also maintains that each of the constituent semantic fea-
tures has an associated relevance weight which is
believed to represent the level of informativeness of the
semantic feature for the concept. In particular, when a
feature for a given target concept has both high distinc-
tiveness (Devlin et al., 1998) and high dominance (Ash-
craft, 1978), then it shows much greater semantic
relevance for that concept.

No previous empirical investigations were available
on how the semantic relevance of a set of features is
combined in the process of naming to description. In
this study three integration models of semantic
features were developed and evaluated: (1) the additive
rule model, in which integration reflects a linear com-
bination of dominance values of features; (2) the mul-
tiplicative rule model, in which the integrated
relevance value is defined as the multiplicative combi-
nation of the relevance values in the concept descrip-
tion; and (3) the max rule model, which mimics a
sort of winner-take-all integration process. All three
models predict that errors may arise because of low
integrated relevance of semantic features. The results
of the three experiments based on the naming-to-de-
scription task provide a clear support for the additive
integration rule.

A related issue—still empirically unexplored—re-
gards the modulation of different task-instruction in a
naming-to-description task. In our studies the partici-
pants were required to give the concept name that corre-
sponded to a verbally presented set of features. In
contrast to this standard naming-to-description task in
which no emphasis was put on the way participants were
to process the set of features, a variant could explicitly
require to verify that all features in the description must
conjunctively belong to the target concept (we call this
sort of task the conjunctive naming-to-description task).
In this case we expect that, when a concept description
contains irrelevant features for the target concept, then
a multiplicative-type rule would work better than a stan-
dard additive rule. As an example, let us consider two
features f1 and f2 with corresponding relevance values
ki1 = 0.05 and ki2 = 7.5 (for a concept ci), respectively.
The results of the integration rules are: 7.55 =
0.05 + 7.5 for standard additive, 0.375 = 0.05 · 7.5 for
multiplicative, and 7.5 = max{0.05,7.5} for max rule.
Clearly, the multiplicative rule better reflects the fact
that a description containing features f1 and f2 is (con-
junctively) inconsistent for ci. In addition, in a disjunc-

tive naming-to-description task in which emphasis is on
the information that at least some features in the con-
cept description set belong to ci, then integration rules
based on either an additive property or a winner-take-
all mechanism would probably provide a better account
for naming accuracy. Therefore, we caution to add that
the predictive superiority of the additive rule observed in
standard naming-to-description tasks does not necessar-
ily imply superiority in the other possible extensions of
the same experimental paradigm. In this view, our rele-
vance integration models resemble other concept repre-
sentation models suggested by those researchers who
advocate that psychologically plausible semantic models
should characterize features in a context-sensitive man-
ner (e.g., Barsalou, 1982; Tversky, 1977. Tversky
(1977), for example, claims that feature salience plays
an important role and that it is not fixed, but varies with
context. A future avenue of research could therefore be
the exploration of the effect of contextual factors in the
binding mechanism of concept retrieval.
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Appendix A

A.1. A GLM model for naming accuracy

On the basis of both the definitions of integration rules and
their corresponding assumptions, three generalized linear mod-
els (GLM, Nelder & Wedderburn, 1972) of naming accuracy,
each corresponding to a different integration rule h

(h = 1,2,3), were defined as follows. Each model consists of
three components:

(1) The binomial random component, specifying the condi-
tional distribution of the response variable yi, naming

accuracy,9 given the predictor Kh
i .

(2) The linear predictor

lh
i ¼ bh

0 þ bh
1Kh

i

on which the expected value ph
i of yi depends.

(3) The invertible link function

/ðph
i Þ ¼ log

ph
i

1� ph
i

� �
;

which transforms ph
i to the linear predictor, and where

ph
i ¼

1

1þ exp½�ðbh
0 þ bh

1Kh
i Þ�

ð10Þ

is the inverse link function, ph
i ¼ /�1ðlh

i Þ, (also called
mean function) representing a linear logistic function.

Finally, in order to asses goodness-of-fit, we use maximized
log likelihood

log L ¼
XI

i¼1

½yi log ph
i þ ð1� yiÞ logð1� ph

i Þ�;

where ph
i denotes the fitted probabilities.

Implementing the PBCM procedure

In order to apply the parametric bootstrap to our data we
implemented the following steps.

(1) We generated 1000 bootstrap samples from the original
accuracy sample. More precisely, for each observed
accuracy yi, the resampling was done by drawing an inte-
ger number between 0 and N from a binomial distribu-
tion, n�i � Binðyi;NÞ, therefore the observed proportion
yi was replaced with y�i ¼ n�i =N .

(2) Each of these nonparametric samples were used to esti-
mate the parameters for the three integration relevance
models. In particular for each model h (h = 1,2,3), and
for each bootstrap sample m (m = 1,2, . . . , 1000) we
obtained the new estimates for the intercept parameter
ðbh

0Þ and the steepness parameter ðbh
1Þ.
9 Naming accuracy yi is defined as the proportion of subjects
who correctly retrieve the name of concept ci given Ai.
(3) Each of these new pair was then used once to generate
data by first computing the probability ph

i ½m� of correctly
retrieving the name of the target concept ci according to
the logistic model h. Next, sampling was done by draw-
ing an integer number between 0 and N from a binomial
distribution, nh

i ½m� � Binðph
i ½m�;NÞ and a new simulated

value was obtained by yh
i ½m� ¼ nh

i ½m�=N . In this way,
1000 different new data sets were generated according
to model h.

(4) Finally, each of the n = 3000(=3 · 1000) generated data
set was fit by all three models, and the difference in the
AIC criterion was calculated for each pair of different
models. The latter step yielded three distributions of
AIC differences each associated with a different pair
(h,h 0) of integration rule models.

A.2. A Bayesian model for multiple cues integration

A simple Bayesian model for multiple cues can be defined as
follows. Let Ai be the set of features corresponding to a descrip-
tion of concept ci. Using the Bayes’ rule and under the assump-
tion of independence of features the Bayesian model for
multiple cues is

PðcijAiÞ ¼
PðciÞ

Q
j2J i

P ðfjjciÞ
PI

i0¼1P ðci0 Þ
Q
j2J i

Pðfjjci0 Þ
; ð11Þ

where Ji denotes the set of indices associated with the features in
Ai. According to a feature-to-listing task paradigm, the param-
eters of the Bayesian model can be estimated as follows:

pðciÞ ¼1=I; ð12Þ
pðfjjciÞ ¼xij=N : ð13Þ

Therefore, by simple algebra we can approximate P(ci ŒAi) using
the following equation:

pðcijAiÞ ¼

Q
j2J i

xij

PI
i0¼1

Q
j2J i

xi0j

: ð14Þ
A.3. A simple procedure to estimate the level of semantic

damage

For each final model we estimated the percentage of seman-
tic degradation according to the following simple statistical pro-
cedure. First, we computed the proportion of integrated
relevance loss in the DAT group using the estimated intercept
values, bh

0 (for controls) and bh
0 þ ch (for patients with DAT),

and the following equation:

lh
DAT ¼ 1� jbh

0j
jbh

0 þ chj
; h ¼ 1; 2; 3:

For example, to compute the integrated relevance loss for the
additive relevance model we have

l1
DAT ¼ 1� j � 2:940j

j � 2:940þ ð�1:956Þj ¼ 0:399

(see Table 8). This proportion can be represented in the y-axis
of the perturbation graph (Fig. 10). Next, we derived the
approximate amount of semantic deterioration in the DAT
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group by averaging the two consecutive percentages, p1 and p2

(with p1 < p2) in the perturbation graph (Fig. 10, x-axis), such
that lh

DAT 2 ½uqðp1Þ;uqðp2Þ�, where q denotes the size of the con-
cept description in the naming-to-description task. So for exam-
ple, in Fig. 10, we have that 0.399 2 [u3(35), u3(40)], where
p1 = 35 and p2 = 40 represent the two consecutive percentages
in the perturbation graph satisfying the interval condition. This
yields 37.5% of semantic deterioration.
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